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SUMMARY 
The head-on collision and subsequent reflection of a Regular Reflection (RR) from the end-wall of a shock 
tube has been investigated both experimentally and numerically for two different incident shock wave Mach 
numbers and two different reflecting wedge angles. 

The agreement between the double-exposure holographic interferograms and the numerical simulations 
which were obtained using a GRP based numerical code, was found to be excellent in the RR region and 
very good behind the head-on reflected RR. 

The overall good agreement between the computed and experimental constant-density contours (isopyc- 
nics) constitutes a validation of the computational method, including the oblique-wall boundary condition. 
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INTRODUCTION 

When a planar shock wave collides with an oblique planar surface, it reflects over it either as 
a Regular Reflection (RR) or as an Irregular Reflection (IR) depending upon the incident shock 
wave Mach number, Mi, and the reflecting wedge angle, 8,. 

A schematic illustration of the wave configuration of a regular reflection, which is the subject of 
the present study, is shown in Figure 1. As can be seen, the regular reflection consists of two 
discontinuities, namely, the incident shock wave, i, and the reflected shock wave, r, which meet on 
the reflecting wedge surface at the reflection point, R. The corner-generated signals (shown in 
Figure 1 by a dashed line) divide the reflected shock wave, r. at point c into two parts: a curved 
part and a straight part. Since the flow states (0), (1) and (2) are bounded by straight discontinui- 
ties, they are uniform provided the gas is assumed to be a perfect fluid (i.e. p = 0, and k = 0, where 
p is the dynamic viscosity and k is the thermal conductivity). In a frame of reference attached to 
the reflection point R, the flow in states (0), (1) and (2) is supersonic, i.e. ME > 1, M': > 1 and 
A4:> 1, where M y  is the flow Mach number in state ( i )  with respect to point R. Note that M:> 1 
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Figure 1. Schematic illustration of the wave configuration of a regular reflection-RR 

is the condition for the existence of a regular reflection, since the R R 4 R  transition occurs at 
M; = 1. For more details, the interested reader is referred to Ben-Dor.’ 

When the reflection point, R, reaches the corner C at the end of the reflecting wedge, the 
incident shock wave reflects head-on and interacts with the reflected shock wave, r. The 
interaction of the head-on and the regularly reflected shock waves result in the wave configura- 
tion shown in Figure 2. The wave configuration consists basically of two triple points, T1 and T2, 
which have a common Mach stem, mlz,  which, in general, is not straight but slightly curved. Note 
that this reflection process is a particular case of the more general reflection process which 
was recently investigated analytically and experimentally by Ben-Dor et al.’ and numerically 
by Itoh et aL3 

The resulting wave configuration grows linearly from the corner C, i.e. it is self-similar, as long 
as the second triple point, Tz, has not reached point c, which as mentioned earlier is the point 
reached by the corner-generated signals along the regularly reflected shock wave, r. 

The aim of the present study is to develop a numerical code which can capture the above- 
mentioned reflection process with high resolution and to conduct a reliability test of the 
numerical method by comparing its results with actual shock tube experiments visualized using 
double-exposure holographic interferometry. The present numerical code is based on the Gener- 
alized Riemann Problem (GRP) scheme for compressible flows. It was applied to simulate the 
head-on reflection process of a regular reflection from the end-wall of the shock tube for the 
conditions given in Table I. 

EXPERIMENTS 

The experiments were conducted using a 60 mm x 150 mm shock tube of the Shock Wave 
Research Center of the Institute of Fluid Science of Tohoku University. The driver section was 
1.5m long and had a diameter of 230mm. The driver gas was air at room temperature 
(290-293 K). The length of the driven section (the channel) was 8 m. The test section windows 
were made of BK7. Their dimensions were 150 mm x 230 mm. The test gas was dry air at room 
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Figure 2. Schematic illustration of the wave configuration which results following the head-on reflection of the regular 
reflection at the shock tube end-wall 

Table I. Conditions of the three investigated cases (a) 
~~ 

Case No. Mib 6,  Grid 

1 1.26 55" 220x 190' 

2 1.48 55" 235 x 175" 
705 x 525d 

3 1.26 65" 660 x 480d 

a The experiments were conducted in dry air at Po z 760 mmHg 
and To z 29C293 K 

This is an average value out of three to five experiments 
' Coarse mesh. Square cells 

Fine mesh. Square cells 

temperature (290-293 K) and atmospheric pressure (- 760 mmHg). The incident shock wave 
velocity was recorded using Kistler pressure transducers which were flash mounted in the upper 
wall of the shock tube just ahead of the test section. The attenuation of the incident shock wave 
was checked and found to be negligibly small. 

Double-exposure holographic interferometry was used to record the investigated interaction. 
The light source was a Q-switched giant-pulse ruby laser ( A  = 694.3 nm) having a pulse width of 
20 ns and an energy of about 1 J per pulse. 
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NUMERICAL METHOD 

The two-dimensional plane-symmetric flow phenomenon under consideration here was com- 
puted by a 2D code based on the GRP scheme for compressible inviscid flows? (Note, however, 
that in Reference 4 a duct flow is treated here the scheme is reduced to plane symmetry by 
assuming unit duct area throughout.) The 1D GRP scheme was extended to the present 2D code 
by employing a second-order-preserving operator splitting fashioned after Strang,' augmented by 
an oblique wall boundary condition. In the following, an outline of the GRP scheme along with 
the 2D extension features are presented. 

The GRP scheme is best described as combining the exactness of a formulation based on 
compatibility relations along characteristic lines in (x, t ) ,  with the robustness and shock capturing 
features of a conservation laws scheme. The discretization scheme is a piecewise linear approx- 
imation of flow variables per cell, with discontinuities at cell interfaces. The key idea is to evaluate 
the fluxes of mass, momentum and energy from exact solutions to the GRPs that arise at each cell 
interface; in particular, these fluxes are second-order accurate in time, since each flux component 
and its time derivative are determined analytically. The fluxes are subsequently incorporated in 
a discrete time integration scheme for the average densities of mass, momentum and energy per 
cell, resulting in second-order accurate integration of the hydrodynamic conservation laws. 

Consider the Euler equations governing the time-dependent flow of an inviscid compressible 
fluid in (x, t ) :  

a a 
at ax - U+- F(U)=O 

where p, p ,  e, u and y are the density, pressure, specific energy, velocity and specific heat capacities 
ratio (in the present study a perfect gas is assumed). The grid comprises equally spaced 
cell-interface points ~ ~ + ~ , ~ = ( i + 1 / 2 ) A x ,  where A x  is the grid spacing and cell i is the interval 
x i -  1,2 < x < x i +  centred about the point xi  = iAx. The conservative second-order difference 
scheme for the time integration of the hydrodynamic conservation laws is 

where the time-centred fluxes F(U)q,':/Z are obtained by the following p roced~re .~  The flow at 
time level t" is approximated as piecewise linear in cells (Figure 3). The Riemann problems that 
correspond to the initial discontinuity [U,, U,] at cell interfaces are solved, giving rise to the 
first-order (upwinded) fluxes F(U)l+l/2. This is followed by the evaluation of the first time- 
derivative of flow variables at cell interfaces a/at  ((U)l+ using analytic expressions that 
resulted from the GRP analysis. The stage is then set for evaluating the second-order accurate 
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Figure 3. The GRP spatial discretization scheme 

fluxes given by 

where the notation F’(U) denotes the Jacobian matrix of F, with respect to U. 
Following the integration of the conservation laws, the 1D scheme requires an updating of the 

slopes of the flow variables in the cells, subjected to monotonicity constraints designed to avoid 
erroneous interpolations through hydrodynamic jumps (shocks, contacts); the Van-Leer6 mono- 
tonicity scheme was imposed on the slopes of primitive variables (u, p, p and u in the 2D case). 

Turning to the case of flow in two space dimensions, the 2D Euler equations in (x, y, t )  are as 
follows: 

a a a 
-U+-F(U)+-G(U)=O, (44 
at ax a Y  

E = e + 3 ( u 2 + u Z ) ,  p = ( y - l ) p e ,  (44 
where u, u are the velocity components, and F(U), G(U) are the flux components in the x, y 
directions, respectively. An operator-splitting is now performed on equation (4), whereby the 2D 
equations are split into a set of two 1D equations, each of which is identical to equation (1) except 
for the addition of a fourth equation expressing the conservation of the transverse-momentum 
component. The splitting is represented by the 1D operators, L,, Ly as follows: 

a a 
at ax 
a a  

a Y  

L, by -U+-F(U)=O, 

Ly by at U+- G(U)=O. 
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Generally speaking, a finite difference integration of L, followed by a similar integration of L, 
constitutes a split finite difference integration of the 2D conservation laws given by equation (4). 
We actually employed this very simple splitting scheme denoted as L,Ly in the computations 
presented subsequently. The reasoning behind this choice is the following. In an analysis of 
operator splitting by Strang,’ it was shown that the combination of fractional split operators 
L;I2 ti L;I2, where the superscripts denote a fraction of the integration time-step, constituted 
a second-order accurate integration of the 2D equations, provided each split operator was 
second-order accurate by itself. Since we are seeking to obtain a numerical solution through 
a sequence of many time steps, we argue that by lumping the closing half-step L;’’ of a previous 
time cycle with the opening one of the following cycle, an error of O(At2) is committed, which is 
consistent with the overall second-order accuracy of the scheme. The resulting split scheme is the 
simplest one, namely, L: L: . 

Our operator splitting scheme is elucidated by considering the intuitive two-stage advection 
illustrated in Figure 4. The LiL; combination gives rise to a displacement of a lump of fluid 
through a grid corner (Figure 4) having a volume uuAt2, i.e. of second-order magnitude. This 
feature of the splitting scheme results from the consecutive application of L; L:; it would not have 
been obtained had the two operators been performed simultaneously. 

The only modifications to the truly 1D GRP scheme are the inclusion of the transverse velocity 
components in the expression for kinetic energy, and the addition of a transverse momentum 
conservation law. It is sufficient to consider the L, operator, since the L, operator can be derived 
by analogy. The flux of puv is treated by the GRP scheme as a pure advection since the 
accelerating y-component of the pressure gradient is absent from L,. Physically speaking, this 
corresponds to the assumption that fluid particles advected through cell interfaces retain their 

( C )  ( d )  

Figure 4. Illustration of the operator splitting scheme as uniform advection: (a) single Li integration; (b) single 
L: integration; (c) simultaneous LiL;  integration; (d) split Lf L: integration 
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transverse velocity component u throughout the time-step At, regardless of any wave structure 
resolving the discontinuity at t" at each cell interface. However, since the average gradient dv/a(  
per cell is to be accounted for (r is the local Lagrange co-ordinate defined as dr  = pdx), the flux 
puu at i+ 1/2 is not constant throughout the time-step. The time-derivative fix of the advected 
transverse velocity component ux at cell interface i+  1/2 is given by 

f i x=  - P x U x ( $ ) ,  

where subscript x will, henceforth, denote a flow variable evaluated at the cell interface i + 1/2 and 
the dot will denote the corresponding time-derivative. The analytic evaluation of cell-interface 
variables and their first time derivatives is the main outcome of the GRP analysis, and we refer to 
Reference 4 for details. Here we shall assume that these values have already been evaluated for all 
primitive variables, i.e. for u, u, p ,  p ,  and we proceed to specify the ensuing expressions for flux 
components and their time-derivatives. The flux components are given by 

By taking the time-derivative of the flux components given in equation (7), the following 
expression is obtained: 

[&F(U)]I i +  112 = 

where the time-derivative of ux is given by equation (6) and all other variables along with their 
time-derivatives are evaluated from the analytic expressions resulting from the GRP analysis 
(for details see Reference 4). 

The only remaining feature of the 2D scheme is the Boundary Conditions (BC). The BC at rigid 
walls are a zero value of the normal velocity component. In the numerical scheme, this BC implies 
zero value for all flux components at cell boundaries that lie along a rigid wall, except for the 
pressure part of the momentum flux. Thus, the wall pressure constitutes the corresponding 
momentum flux. At walls of constant x or constant y the implementation of this BC (in 
accordance with the GRP scheme) is performed by solving a rigid-wall GRP at each x-facing or 
y-facing cell interface. 

At an oblique wall (Figure 5),  we resort to the following split BC scheme. In each direction 
(x or y), the segment of an oblique wall within a cell is replaced by a step having an x-facing 
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Figure 5. Oblique-wall boundary scheme. The wall segment within each cell is split into a x-step and a y-step 

segment and a y-facing segment. During the performance of L j ,  a GRP is solved at the x-facing 
step taken as a rigid wall, and likewise during the L: phase. The respective wall pressures and 
their first time-derivatives are then used in the expression for the momentum flux. As for the 
geometrical aspects of integrating the conservation laws according to equation (2) at the partial 
cells formed by an oblique wall (Figure 5), they are accounted for as follows. First, all fluxes are 
multiplied by the actual length of the respective cell-interface segment. Second, the actual cell 
volume is evaluated and is used to replace Ax in the conservation laws given by equation (2). We 
note that since the full volume of a regular cell is Ax Ay, this scheme reverts to equation (2) in the 
case of a regular cell. 

In the present study, we also employed an inflow BC for the grid boundary through which the 
incident shock entered the test section. Assuming a negligible attenuation rate of the incident 
shock, we simply specified the inflow BC as the constant values corresponding to the flow behind 
the incident shock, according to the Rankine-Hugoniot relations, based on the measured shock 
wave Mach number and the initial air pressure and temperature prior to the shot. This BC is valid 
as long as no reflected waves reach the corresponding grid boundary. 

RESULTS AND DISCUSSION 

The initial conditions of the various experiments which will be discussed in the following are 
summarized in Table I. The experiments cover two different incident shock wave Mach numbers, 
M i x  1.26 and Mi x 1.48 for the same reflecting wedge angle 6,  = 55", and two different reflecting 
wedge angles 6, = 55" and 6,  =65" for the same incident shock wave Mach number, M i x  1.26. 
Consequently, the dependence of the phenomenon both on the incident shock wave Mach 
number and the reflecting wedge angle could be evaluated. 

Holographic interferograms and numerical simulations were produced for each one of the 
three cases listed in Table I. The numerical simulations are presented in the following as constant 
density contours (i.e. isopycnics) having a density spacing designed to match the experimental 
holographic interferograms. 

The density difference corresponding to one fringe shift in the holographic interferograms 
shown earlier is determined by the experimental set-up and can easily be calculated from 
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where A is the wave length of the light source by which the holographic interferogram was 
recorded (a ruby laser for which A=694.3 nm in the present study), K is the Gladstone-Dale 
constant of the investigated gas (approximately 0-225 cm3 g-' for dry air) and L is the width of 
the test section (60 mm in the presently used shock tube). Therefore, the density difference 
between two neighbouring fringes (i.e. isopycnics) in the holographic interferograms is 
Ap=5.14 x gcm-'. 

Note that owing to a small air gap between the shock-tube end-wall and its upper wall, which 
can be clearly seen in all the holographic interferograms, the high pressure air behind the head-on 
reflected shock wave leaked through the gap. As a result, an expansion wave was generated at the 
upper edge of the shock-tube end-wall. This expansion wave, which can be clearly seen at its early 
stages in the upper-right corner of the holographic interferograms shown in Figures 6(c), 7(d) and 
8(a), and which interacted later on with the investigated wave configuration as can be seen in the 
holographic interferograms shown in Figures 7(j) and 8(c), was not simulated in the numerical 
computations. 

Three holographic interferograms were recorded for Case 1 of Table I. The first, Figure 6(a), for 
which Mi= 1.260, shows a regular reflection prior to its head-on collision with the shock-tube 
end-wall, the second, Figure 6(c) for which Mi= 1.256, and the third, Figure 6(e), for which 
Mi = 1.263, show, respectively, the wave configurations at a short time and at a longer time after 
the regular reflection [shown in Figure 6(a)] reflected head-on from the shock-tube end-wall. 
Each holographic interferogram is accompanied by a corresponding numerical simulation 
[Figures 6(b), 6(d) and 6(f), respectively] which were obtained using a coarse mesh of 220 x 190 
cells (all grids in this study had square cells) by the presently developed computer code. Note that 
unlike the single shot holographic interferograms which slightly differ from each other in their 
incident shock wave Mach numbers, the incident shock wave Mach numbers in the respective 
numerical simulations shown in Figures qb), qd )  and 6(f) are identical, i.e. Mi= 1.263. 

Four holographic interferograms were recorded for Case 2 of Table I. The first, Figure 7(a), for 
which Mi= 1.477, shows a regular reflection prior to its head-on collision with the shock-tube 
end-wall, the second, Figure 7(d), for which Mi= 1.488, the third, Figure 7(g), for which 
Mi = 1.488, and the fourth, Figure 7(j), for which Mi = 1.491, show, respectively, the wave 
configurations at a short time, at a longer time and at an even longer time after the regular 
reflection [shown in Figure 7(a)] reflected head-on from the shock-tube end-wall. 

Each holographic interferogram is accompanied by two corresponding numerical simulations 
[Figures 7(b), 7(c), 7(e), 7(f), 7(h), 7(i), 7(k) and 7(1), respectively]. The first of each pair of these 
corresponding numerical simulations, i.e. Figures 7(b), 7(e), 7(h) and 7(k), were obtained using 
a coarse mesh of 235 x 175 cells, and the second of each pair of these corresponding numerical 
simulations, i.e. Figures 7(c), 7(f), 7(i) and 7(1), were obtained using a fine mesh of 705 x 525 cells. 
As can be seen the ratio between the fine and the coarse meshes is 3: 1 in each direction. 
A comparison of the fine and coarse mesh simulations clearly indicates a high degree of numerical 
convergence of the finer computations. 

In order to illustrate the discontinuities (mainly the two sliplines, s1 and s2, emanating from the 
two triple points, T1 and Tz, in Figure 2) better, the fine mesh computations were replotted using 
a value of Ap six times smaller than that used in Figures 7(i) and 7(1). The results are shown in 
Figures 7(m) and 7(n), respectively. It should be noted again that while the holographic 
interferograms were obtained with incident shock wave Mach numbers in the range 
1.477 I M i l  1.491, all the numerical simulations were obtained with an identical value of 

Two holographic interferograms were recorded for Case 3 of Table I. The first, Figure 8(a), for 
which Mi= 1-251, and the second Figure 8(c), for which Mi= 1.265, show, respectively, the wave 

Mi = 1.488. 
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Figure 8. (e) A replot of the fine mesh simulation shown in Figure 8(d) with a value of Ap six times smaller 

configurations at a short time and at a longer time after the regular reflection reflected head-on 
from the shock-tube end-wall. 

Each of these two holographic interferograms is accompanied by a corresponding numerical 
simulation [Figures 8(b) and 8(d), respectively] which were obtained using a fine mesh of 
660 x 480 cells. Similar to the results shown in Figures 7(m) and 7(n) with the finer value of Ap, the 
computational results simulating the wave configuration shown in Figure 8(c) were replotted 
using a value of Ap six times smaller than that used to draw Figure 8(d). The results, shown in 
Figure 8(e), clearly indicate that by applying this procedure, the two sliplines emanating from the 
two triple points become much more pronounced. 

A comparison of the numerical simulations with the corresponding holographic interferograms 
clearly indicates that the presently developed computer code is capable of excellently reproducing 
both the wave configurations at the various stages of the reflection process and the general shapes 
of the isopycnics. 

The agreement is nearly perfect at the RR region as can be seen by comparing Figures 6(a) and 
6(b), and Figures 7(a) and 7(b). The distortion of the numerical isopycnics at the oblique wall, 
which can be seen in Figures 6(b) and 7(b), is evidence of an imperfect implementation of the 
boundary condition along the oblique wall, which causes a numerical ‘adjustment layer’ of several 
cells near the wall. The agreement between the experimental results and the numerical simula- 
tions after the RR reflected head-on at the shock-tube end-wall is also nearly perfect. [cf. Figures 
6(c) and 6(d), Figures 6(e) and 6(f), Figure 7(d) with Figure 7(e) or Figure 7(f), Figure 7(g) with 
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Figure 7(h) or Figure 7(i), and Figure 7(j) with Figure 7(k) or Figure 7(1).] At the corner region 
(the vicinity of point C in Figure l), quite understandably the agreement is good but not perfect. It 
should be noted here that as shown by Ben-Dor and Glass,’ a reproduction of the wave 
configuration does not guarantee a reproduction of the flow field properties, e.g. isopycnics, 
Consequently, the very good agreement between the experimental holographic interferograms 
and the corresponding numerical simulation constitutes a validation of the computational 
method, including the oblique-wall boundary condition. 

It should also be mentioned that while the shock waves were clearly reproduced even by the 
coarse-mesh computations [see Figure 6(f)], a clear reproduction of the sliplines required 
a three-times-finer grid. [Compare Figures 7(h) and 7(i), and 7(k) and 7(1).] In addition, while 
with the coarse-mesh calculations the shock waves appear to be too thick, in the fine-mesh 
calculations they are almost as thin as in the holographic interferograms. [Compare Figures 7(b) 
and 7(c), Figures 7(e) and 7(f), and Figures 7(h) and 7(i).] Furthermore, when a finer drawing was 
generated by using a six-times smaller value of Ap, the numerically computed sliplines became as 
sharp and as clear as the numerically computed shock waves [see, for example, Figures 7(m) 
and 7(n)]. 

CONCLUSIONS 

A plane symmetric 2D numerical code based on the GRP method was developed in order to 
simulate the head-on reflection of a regular reflection from the shock-tube end-wall. 

The predictions of the numerical code were compared with the results from actual shock tube 
experiments which were obtained using double-exposure holographic interferometry. The com- 
parison revealed that the presently developed numerical code can very well simulate this complex 
wave reflection phenomenon. The overall very good agreement constitutes a validation of the 
GRP based computational method, including the oblique-wall boundary condition. 
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